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Interfacial Tension and Interface Delocalization Phase
Boundary for Strongly Type-I Superconductors1

C. J. Boulter2 and J. O. Indekeu2,3

We analytically determine the interface delocalization (or wetting) transition
phase boundary in the limit of strongly type-I superconductors. In particular,
within Ginzburg-Landau theory we derive an analytic expression for the
reduced surface tension, rsc/N, of a type-I superconductor. We find that the
truncated expansion rsc/N = 2 ^/2/3- 1.02817 ^/K — 0.13307A: ^/K (where K is
the Ginzburg-Landau parameter) is so accurate in the entire type-I regime
O ^ K< 1/^/2 that derivation of higher-order terms is unnecessary. We further
derive an expression for the wall/superconductor interfacial tension which again
proves accurate across a broad range of K values. These expansions allow us to
locate the low-k interface delocalization phase boundary accurately, comple-
menting previous numerical results for the wetting phase diagram.

1. INTRODUCTION

In this paper we present an overview and tutorial summary of some surface
tension calculations for type-I superconductors based on Ginzburg-Landau
(GL) theory [1, 2]. In particular, in Section 2 we consider the interfacial
tension between normal (N) and superconducting (SC) phases in terms of
an expansion in the GL parameter K. This tension is a fundamental quan-
tity in classical superconductivity and, as we discuss, played an important
role in the introduction of the GL theory of superconductivity. In Section 3
we determine a similar expansion for an interfacial tension pertinent to the
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case of a semi-infinite geometry with a "wall" corresponding to the surface
of the superconducting material. This allows us to derive features of the
phase diagram for the interface delocalization transition recently predicted
in type-I superconductors [3].

2. SUPERCONDUCTING/NORMAL INTERFACIAL TENSION

In a bulk superconducting material at two-phase coexistence it is
natural to consider the interfacial or surface tension between the normal
and the superconducting phases, ySc/N- This quantity is fundamental in
distinguishing type-I superconductors, where the positive surface tension
YSC/N > 0 stabilizes the subdivision of the sample at a macroscopic scale,
and type-II superconductors, with a negative surface tension leading to an
array of flux tubes in place of a macroscopic interface. Further, in their
groundbreaking paper GL motivated the modeling of superconductivity
using the general theory of phase transitions by noting, "The existing
phenomenological theory of superconductivity is unsatisfactory since it
does not allow us to determine the surface tension at the boundary between
the normal and superconducting phases..." [4]. In that original paper
Ginzburg and Landau were interested in calculating an expansion for ysc/N

in terms of the so-called GL parameter, K = A/£, which is defined as the
ratio of the magnetic penetration depth to the bulk coherence length. Thus,
1 and £ denote the typical length scales over which the magnetic induction
and superconducting order-parameter |u|2, respectively, vary. In particular,
one wants an expansion in the IOW-K limit when there is little overlap
between the magnetic induction and \ u \ . By construction the GL theory is
valid only close to the bulk critical temperature Tc. In this region it is con-
venient to define the "reduced" (temperature independent) surface tension,
rsc/N(K) such that

where, for concreteness, the constant of proportionality is fixed by choos-
ing /"SC/N(k = 0) = 2 /2/3. In deriving a IOW-K expansion for ,TSC/N we find
it instructive to recall some of the analysis of Ginzburg and Landau. The
main ingredient is the introduction of an appropriate free energy functional
rsc/N. For our interests it is sufficient to consider the one-dimensional
problem in which the x-axis is normal to the boundary separating the SC
phase (x>0) and normal phase. For this case Ginzburg and Landau
prescribe (for T<TC)
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where A is the vector potential, the applied magnetic field is at the
coexistence value H0= 1/^/2, and an overdot denotes differentiation with
respect to x. The transition from the SC phase to the N phase takes place
in a transition layer in which for .v-> oo, we have the SC phase (u -> 1,
A -> 0), and for x -> - x the N phase (u - 0, A -> 1/^/2).

Minimization of Eq. (2) with respect to u and A yields the GL equations

which should be solved subject to the above boundary conditions. These
equations can be integrated once, yielding A2 + U 2 /K 2 = — ij/2 + ij/4/2 +
A2\ji2+1/2, although general analytic solutions cannot be found. However,
Ginzburg and Landau made progress in the limit K -> 0 by noting that the
approximation A — C exp( — J ifr dx) is a valid solution to the second dif-
ferential equation whenever \ u / ( u 2 | <K 1. When K is small this is satisfied for
large x because in this region u differs from the bulk value u = 1 only by
exponentially small corrections [4]. Substituting this expression for A into
the first integral leads to a solvable equation for u appropriate in this
region. In particular, within this approximation

valid in the region 1/^/K <x< x. Further, from order of magnitude con-
siderations they identify the constant C~\1^/K. This means that at the
boundary of the region of validity of the solutions [Eq. (4)], A»1.
Hence, from this point on (i.e., X < \ 1 ^ / K ) the first GL equation is well
approximated by if = K2A2\u/. In this case Ginzburg and Landau noted that
the scale transformation x = X^/K, $ = ^/^/~K, and A = A ^/K yields the
following "universal equations" for this region, \{i" = A2\j/ and A" = \jf2A.
Here, primes denote differentiation with respect to x. Ginzburg and
Landau did not solve these universal equations explicitly but showed that
the contribution to rsc/N from this region is (!(^/~K). Substitution of the
results from Eq. (4) into Eq. (2) for x> 1/^/K led Ginzburg and Landau to
their final result,

Surprisingly, the goal of extending this expansion for rsc/N(k) was not
further pursued until recently when Mishonov [5] and Osborn and Dorsey
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[6] made predictions for the amplitude of the o ( K ) term. Specifically they
found

with a clear discrepancy between the two results. Here we demonstrate
agreement with the suggestion of Mishonov and further determine the next
term in the expansion. We find it convenient to use the rescaled variables
described above so that the GL equations take the form

We proceed by making perturbation expansions for \j/(x) = \j/l(x) +
K\j/2(x)+ ••• and A(x) = A 1 ( x ) + KA2(x) + • • • . Substituting these expan-
sions into Eq. (7) yields the GL universal equations for $, and At, with
similar equations for the higher-order elements. The boundary conditions
are such that, for example, the $,• are required to recover the term of
corresponding order in the expansion of tanh (x ^/K/^/2)/^/K for jc-> oo.
In this way our task is actually to compute the "residual" contributions to
the \j/ and A, a computation which turns out to lead to an extremely
rapidly convergent expansion.

We omit the details of the calculation, which can be found in Ref. 1,
restricting ourselves here to the pertinent results. The term of &(^/K) in
^~SC/N is given by the formal expression — 4 ^/K J^ dxA\^i\. This is
especially instructive because it explicitly shows that the surface tension
correction is negative and that the lowering of the surface tension is due to
overlap of \f/ and A. Our main result is the expansion for rsc/N,

where the correction coefficients have been calculated numerically with an
accuracy of +1 in the fifth decimal. We can continue our scheme to
calculate further terms; however, we conclude this section by arguing that
this is unnecessary. First, we comment that the expansion [Eq. (8)] trun-
cated after three terms is in excellent agreement with numerical data across
the broad range O ^ K < 1 [1], not just the region K « 1, which was our
initial goal. This is shown convincingly in Fig. 1, where we plot the trun-
cated expansion as a function of K. Note that within the thickness of the
line the surface tension takes the value of zero at K=1/^/2. In fact, a
measure of the accuracy of the expansion can be seen from noting
rsc/N(/c = 1/^/2) = —0.00090, when including the term of order K ̂ /K. This
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Fig. 1. Plot of the surface tension F versus K taken from
the analytic expansion r&c/N(K)x2 ,/2/3 - 1.02817 ^/K—
0.13307/c ^/K. Note the accuracy of this IOW-K expansion even
at K= 1/v/2, where the deviation of the surface tension from
zero lies within the thickness of the line.

is extremely close to the exact value of zero, and corresponds to the maxi-
mum error in the truncated expansion across the entire type-I range.

3. INTERFACE DELOCALIZATION TRANSITION PHASE
BOUNDARY

In this section we turn our attention to the interface delocalization
transition in type-I superconductors in which a macroscopically thick
superconducting layer intrudes from the outer surface or wall (W) of the
material into the bulk normal phase [3]. This transition is analogous to
the wetting transition in fluids and may be studied using similar techniques,
for example, an interface potential approach [7]. The transition may also
occur near twinning planes inside bulk superconductors such as Sn and In,
although we do not consider that case here [8]. We concentrate specifi-
cally on determining the first-order delocalization phase boundary in the
IOW-K limit not studied in full in Ref. 3.

The interface delocalization transition can be understood in terms of
interfacial tensions as follows. Assume that the material is at SON



where C=C(r) is given by C=1/2 sinh -1(— v /2 / r )>0 and we have intro-
duced T = E/b. In contrast to Eq. (8) the expansion is regular in K, with the
coefficients at each order being determined analytically. Comparison of this
expansion truncated at (and including) the o ( K 2 ) term with numerically
calculated values of the surface free energy for a range of b < 0 and K values
reveals that the expansion is again rapidly convergent and hence valid
across a large range of K values [2].

We conclude by considering the interface delocalization phase bound-
ary in the IOW-K limit discussed above. In particular, we consider the phase
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coexistence and that the wall favors the SC phase but that the N phase is
imposed in the bulk. Now we may ask whether a macroscopic SC layer
occurs or if, rather a zero or microscopically thin superconducting sheath
is found at the wall. The latter will be the case if the free energy cost of a
W/N interface, yw/N, is less than that of a W/SC and SC/N interface com-
bined, i.e., for yw/N<>'w/sc + ysc/N- Otherwise, the SC phase "completely
wets" the wall and a macroscopic superconducting layer intrudes from the
surface into the bulk. For k<0.374 [3] a W/N interface corresponds to
the null solution |i^|2 = 0 everywhere, yielding the surface free energy
yw/N = 0 [3]. Below we describe the derivation of yw/sc in the limit «•->()
and, using the results of Section 2, derive the phase boundary in the same
limit from the condition yw/sc + rSC/N = 0-

We again use GL theory to calculate the interfacial tension yw/N and
find it convenient to define the reduced tension Fw/N(k) in an analogous
manner to Eq. (1). If we assume that the wall lies in the plane, x = 0, then
the appropriate GL free energy functional is similar to Eq. (2) but with the
lower limit of the integral replaced by zero. In addition, a surface term
must be included which effectively amounts to the boundary condition
d\l//dx\x = 0 = b ~ l u \ x = 0 . The surface extrapolation length b plays the role of
a "surface field"—for the case of enhanced superconductivity at the wall,
required for the interface delocalization transition, we must take b < 0 [9].
The calculation of rw/sc proceeds along the same lines as that of -TSC/N,
i.e., making perturbation expansions for \j/ and A, solving the GL equations
at each order, matching the K -> 0 solutions for x -> oo, and substituting
into the free energy functional to calculate the interfacial tension. The
details of the calculation can be found in Ref. 2. Our final result is
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diagram as a function of the parameters K and r. As motivation we com-
ment that the study in Ref. 3 revealed a line of first-order delocalization
transitions for K < 0.374 showing only slight deviations from linear
behavior. Extrapolation to K = 0 of the numerical results obtained at higher
K suggests an interception of the phase boundary with the K = 0 axis for
r= —0.55. Such an extrapolation is not quite consistent with the analytic
result r* = —0.6022 obtained at K = 0, where the GL equations are exactly
solvable [3]. Here we study the structure of the phase boundary missed by
the crude extrapolation. A simple analytic expression for the phase bound-
ary, /C(T), can be found using only the leading-order correction in K in both
Eq. (8) and Eq. (9). This yields

Fig. 2. Local phase diagram showing the first-order delo-
calization transition phase boundary (FD) accurate to both
f(K) (thin line) and ( r(/r) (thick line). Three data points rep-
resentative of the numerically calculated phase boundary are
also shown. The phases are labeled by the thickness / of the
superconducting surface sheath: / = 0 (no superconductivity),
/ = oo (macroscopic superconducting layer; delocalized SC/N
interface). Note that the line FD displays an inflection point at
/i-~0.1. This feature is clearly visible in f(K2). The meta-
stability limit ( M L ) explained in the text is shown by the
dashed line.



where for brevity we have written D= 1.02817 coth C. This expression is
shown in Fig. 2 by the thin solid line. We can obtain a more accurate result
for the phase boundary by including the next-order terms in Eqs. (8) and
(9) and solving iteratively. This more accurate result for k(T) is shown in
Fig. 2 by the thick solid line (FD; first-order delocalization) separating a
region in which a macroscopic superconducting layer exists (above the
line) and a region in which no superconducting sheath is present. For the
range of r values shown, the delocalization transition is first-order in
nature. It has previously been shown [3] that the normal surface state
(with 1^ = 0) can persist as a metastable state up to the dashed line (ML;
metastability limit). Also shown in the figure are three data points repre-
sentative of the numerically calculated phase boundary—we observe that
the agreement between our analytic result and these data points is very
good, and we are confident that our analysis has determined all the
previously missing fine structure of the phase boundary. In particular,
expanding Eq. (10) about T* = —0.6022... reveals that the phase boundary
approaches the K = 0 axis in a parabolic manner K(T) ~a(r — T*)2, with
a x 4.95. The origin of this 'parabolic foot" can be traced to the O(^/K)
correction in Eq. (8)—if we calculate the phase boundary only to @(^/K)
(so that we use only the K = 0 result for yw/sc)> the resulting curve still dis-
plays the exact parabolic behavior for K -> 0, although agreement with the
numerical results for K ̂  0.2 does, not surprisingly, require the addition of
the higher-order terms.

4. CONCLUSIONS

Within the framework of GL theory we have described the calculation
of expansions for two interface free energies, /"SC/N and Av/sc- These
expansions have been derived strictly in the limit K -»0; however, the
resulting expressions are observed to be good approximations for a broad
range of K values. Of fundamental interest is the expansion for rscfN(K)
given by Eq. (8). In that case the expansion truncated after three terms is
so accurate for the entire type-I regime that calculation of higher-order
terms is unnecessary.

We have used the surface tension expansions to calculate the first-
order delocalization transition phase boundary for K <5C 1. While numerical
results exist for higher K ̂  0.2 and an analytic result for K = 0, solutions at
low K were not explored due to the extra numerical complexity involved
with the presence of the small parameter K. Interestingly, similar techniques
to those described above have recently been used to determine an analytic
expansion in K for the location of the critical delocalization transition [10].

864 Boulter and Indekeu



This occurs for larger K and, hence, the rapid convergence of the expan-
sions is of crucial importance in that case.
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